7x^2+3=24

Simple and best practice solution for 7x^2+3=24 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7x^2+3=24 equation:



7x^2+3=24
We move all terms to the left:
7x^2+3-(24)=0
We add all the numbers together, and all the variables
7x^2-21=0
a = 7; b = 0; c = -21;
Δ = b2-4ac
Δ = 02-4·7·(-21)
Δ = 588
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{588}=\sqrt{196*3}=\sqrt{196}*\sqrt{3}=14\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{3}}{2*7}=\frac{0-14\sqrt{3}}{14} =-\frac{14\sqrt{3}}{14} =-\sqrt{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{3}}{2*7}=\frac{0+14\sqrt{3}}{14} =\frac{14\sqrt{3}}{14} =\sqrt{3} $

See similar equations:

| 11/13=u/8 | | 6x-10=75+65 | | k^2+8k-70=0 | | 9+4m=1-2m | | (x+125)+(2x+75)+(50-2x)=180 | | 3.33*x=6 | | 5y-(-7)=3y+15 | | 2t+(t-2)+(t-18)=180 | | 3/25=x/100 | | 3x-9-2x=2 | | 15x+7=23x | | (c+20)+76+2c=180 | | 8-6p=16-4p-3p | | 5+1/3x=9 | | -1/3(3x-9)=4 | | 3.6x+2.73=x−2.1(-x−2)+0.5 | | (5x-5)+(9x)+(15x-60)+(12x+15)=360 | | 3x+(x-1)+33=180 | | -7n+11=-6n-18 | | -(-x-4)=4 | | 3x+10+3x=70 | | 4x/5=6x/3 | | 3/6f-2=1/6f | | -9.4=x+7.9 | | 3-1/4x=12 | | 1048=x | | 3x(x+4)-5x=26 | | -3(z+2)=2z-3 | | ×=5x-5 | | 21x+160=-31x+208 | | 3n=2.5=3.4 | | y=-7+-1 |

Equations solver categories